Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The origin of rupture segmentation along subduction zone megathrusts and linkages to the structural evolution of the subduction zone are poorly understood. Here, regional-scale seismic imaging of the Cascadia margin is used to characterize the megathrust spanning ~900 km from Vancouver Island to the California border, across the seismogenic zone to a few tens of kilometers from the coast. Discrete domains in lower plate geometry and sediment underthrusting are identified, not evident in prior regional plate models, which align with changes in lithology and structure of the upper plate and interpreted paleo-rupture patches. Strike-slip faults in the lower plate associated with oblique subduction mark boundaries between regions of distinct lower plate geometry. Their formation may be linked to changes in upper plate structure across long-lived upper plate faults. The Juan de Fuca plate is fragmenting within the seismogenic zone at Cascadia as the young plate bends beneath the heterogeneous upper plate resulting in structural domains that coincide with paleo-rupture segmentation.more » « less
-
Abstract Geological processes at subduction zones and their associated geohazards (e.g., megathrust earthquakes, submarine landslides, tsunamis, and arc volcanism) are, to a large extent, controlled by the structure, physical properties and fluid content of the subducting plate, the accreted sediments, and the overriding plate. In these settings, modern seismic modeling and imaging techniques based on controlled-source, multicomponent ocean-bottom seismometer (OBS) data are some of the best tools available for determining the subseafloor elastic properties, which can be linked to the aforementioned properties. Here, we present CASIE21-OBS, a controlled-source marine wide-angle OBS data set recently collected across the Cascadia convergent margin as part of the larger CAscadia Seismic Imaging Experiment 2021 (CASIE21). The main component of CASIE21 is a long-offset multichannel seismic (MCS) survey of the Cascadia margin conducted in June–July 2021 onboard R/V M.G. Langseth (cruise MGL2104) aiming to characterize the incoming plate, the plate interface geometry and properties, and the overlying sediment stratigraphy and physical properties. CASIE21-OBS was conducted during R/V M.G. Langseth cruise MGL2103 (May 2021) and R/V Oceanus cruise OC2106A (June–July 2021). It consisted of 63 short-period four-component OBSs deployed at a total 120 stations along 10 across-trench profiles extending from ∼50 km seaward of the deformation front to the continental shelf, and from offshore northern Vancouver Island to offshore southern Oregon. The OBSs recorded the airgun signals of the CASIE21-MCS survey as well as natural seismicity occurring during the deployment period (24 May 2021 19:00 UTC–9 July 2021 09:00 UTC). The OBS data are archived and available at the Incorporated Research Institutions for Seismology Data Management Center under network code YR_2021 for continuous time series (miniSEED) and identifier 21-008 for assembled data set (SEG-Y).more » « less
An official website of the United States government
